Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 33(10): 6726-6735, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37178203

RESUMO

OBJECTIVES: We evaluate MR radiomics and develop machine learning-based classifiers to predict MYCN amplification in neuroblastomas. METHODS: A total of 120 patients with neuroblastomas and baseline MR imaging examination available were identified of whom 74 (mean age ± standard deviation [SD] of 6 years and 2 months ± 4 years and 9 months; 43 females and 31 males, 14 MYCN amplified) underwent imaging at our institution. This was therefore used to develop radiomics models. The model was tested in a cohort of children with the same diagnosis but imaged elsewhere (n = 46, mean age ± SD: 5 years 11 months ± 3 years 9 months, 26 females and 14 MYCN amplified). Whole tumour volumes of interest were adopted to extract first-order histogram and second-order radiomics features. Interclass correlation coefficient and maximum relevance and minimum redundancy algorithm were applied for feature selection. Logistic regression, support vector machine, and random forest were employed as the classifiers. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic accuracy of the classifiers on the external test set. RESULTS: The logistic regression model and the random forest both showed an AUC of 0.75. The support vector machine classifier obtained an AUC of 0.78 on the test set with a sensitivity of 64% and a specificity of 72%. CONCLUSION: The study provides preliminary retrospective evidence demonstrating the feasibility of MRI radiomics in predicting MYCN amplification in neuroblastomas. Future studies are needed to explore the correlation between other imaging features and genetic markers and to develop multiclass predictive models. KEY POINTS: • MYCN amplification in neuroblastomas is an important determinant of disease prognosis. • Radiomics analysis of pre-treatment MR examinations can be used to predict MYCN amplification in neuroblastomas. • Radiomics machine learning models showed good generalisability to external test set, demonstrating reproducibility of the computational models.


Assuntos
Imageamento por Ressonância Magnética , Neuroblastoma , Masculino , Feminino , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/genética
2.
Eur Radiol ; 32(12): 8453-8462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35437614

RESUMO

OBJECTIVES: To determine the role of apparent diffusion coefficient (ADC) histogram analysis in the identification of MYCN-amplification status in neuroblastomas. METHODS: We retrospectively evaluated imaging records from 62 patients with neuroblastomas (median age: 15 months (interquartile range (IQR): 7-24 months); 38 females) who underwent magnetic resonance imaging at our institution before the initiation of any therapy or biopsy. Fourteen patients had MYCN-amplified (MYCNA) neuroblastoma. Histogram parameters of ADC maps from the entire tumour was obtained from the baseline images and the normalised images. The Mann-Whitney U test was used to compare the absolute and normalised histogram parameters amongst neuroblastomas with and without MYCN-amplification. Receiver operating characteristic (ROC) curves and area under the curves (AUC) were generated for the statistically significant histogram parameters. Cut-offs obtained from the ROC curves were evaluated on an external validation set (n-15, MYCNA-6, F-7, age 24 months (10-60)). A logistic regression model was trained to predict MYCNA by combining statistically significant histogram parameters and was evaluated on the validation set. RESULTS: MYCN-amplified neuroblastomas had statistically significant higher maximum ADC and lower minimum ADC than non-amplified neuroblastomas. They also demonstrated higher entropy, variance, energy, and lower uniformity than non-amplified neoplasms (p > 0.05). Energy, entropy, and maximum ADC had AUC of 0.85, 0.79, and 0.82, respectively. CONCLUSIONS: Whole tumour ADC histogram analysis of neuroblastomas can differentiate between tumours with and without MYCN-amplification. These parameters can help identify areas for targeted biopsies or can be used to predict subtypes of these high-risk tumours before biopsy results are available. KEY POINTS: • MYCN-amplification significantly affects treatment decisions in neuroblastomas. • MYCN-amplified neuroblastomas had significantly different ADC histogram metrics as compared to tumours without amplification. • ADC histogram metrics can be used to predict MYCN-amplification status based on imaging.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neuroblastoma , Feminino , Humanos , Lactente , Pré-Escolar , Estudos Retrospectivos , Proteína Proto-Oncogênica N-Myc/genética , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Curva ROC , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/genética
3.
Neuro Oncol ; 24(2): 289-299, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174070

RESUMO

BACKGROUND: Longitudinal measurement of tumor burden with magnetic resonance imaging (MRI) is an essential component of response assessment in pediatric brain tumors. We developed a fully automated pipeline for the segmentation of tumors in pediatric high-grade gliomas, medulloblastomas, and leptomeningeal seeding tumors. We further developed an algorithm for automatic 2D and volumetric size measurement of tumors. METHODS: The preoperative and postoperative cohorts were randomly split into training and testing sets in a 4:1 ratio. A 3D U-Net neural network was trained to automatically segment the tumor on T1 contrast-enhanced and T2/FLAIR images. The product of the maximum bidimensional diameters according to the RAPNO (Response Assessment in Pediatric Neuro-Oncology) criteria (AutoRAPNO) was determined. Performance was compared to that of 2 expert human raters who performed assessments independently. Volumetric measurements of predicted and expert segmentations were computationally derived and compared. RESULTS: A total of 794 preoperative MRIs from 794 patients and 1003 postoperative MRIs from 122 patients were included. There was excellent agreement of volumes between preoperative and postoperative predicted and manual segmentations, with intraclass correlation coefficients (ICCs) of 0.912 and 0.960 for the 2 preoperative and 0.947 and 0.896 for the 2 postoperative models. There was high agreement between AutoRAPNO scores on predicted segmentations and manually calculated scores based on manual segmentations (Rater 2 ICC = 0.909; Rater 3 ICC = 0.851). Lastly, the performance of AutoRAPNO was superior in repeatability to that of human raters for MRIs with multiple lesions. CONCLUSIONS: Our automated deep learning pipeline demonstrates potential utility for response assessment in pediatric brain tumors. The tool should be further validated in prospective studies.


Assuntos
Neoplasias Cerebelares , Aprendizado Profundo , Glioma , Meduloblastoma , Criança , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/cirurgia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/cirurgia , Estudos Prospectivos , Carga Tumoral
5.
EBioMedicine ; 68: 103402, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34098339

RESUMO

BACKGROUND: Radiologists have difficulty distinguishing benign from malignant bone lesions because these lesions may have similar imaging appearances. The purpose of this study was to develop a deep learning algorithm that can differentiate benign and malignant bone lesions using routine magnetic resonance imaging (MRI) and patient demographics. METHODS: 1,060 histologically confirmed bone lesions with T1- and T2-weighted pre-operative MRI were retrospectively identified and included, with lesions from 4 institutions used for model development and internal validation, and data from a fifth institution used for external validation. Image-based models were generated using the EfficientNet-B0 architecture and a logistic regression model was trained using patient age, sex, and lesion location. A voting ensemble was created as the final model. The performance of the model was compared to classification performance by radiology experts. FINDINGS: The cohort had a mean age of 30±23 years and was 58.3% male, with 582 benign lesions and 478 malignant. Compared to a contrived expert committee result, the ensemble deep learning model achieved (ensemble vs. experts): similar accuracy (0·76 vs. 0·73, p=0·7), sensitivity (0·79 vs. 0·81, p=1·0) and specificity (0·75 vs. 0·66, p=0·48), with a ROC AUC of 0·82. On external testing, the model achieved ROC AUC of 0·79. INTERPRETATION: Deep learning can be used to distinguish benign and malignant bone lesions on par with experts. These findings could aid in the development of computer-aided diagnostic tools to reduce unnecessary referrals to specialized centers from community clinics and limit unnecessary biopsies. FUNDING: This work was funded by a Radiological Society of North America Research Medical Student Grant (#RMS2013) and supported by the Amazon Web Services Diagnostic Development Initiative.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Adolescente , Adulto , Neoplasias Ósseas/patologia , Criança , Aprendizado Profundo , Diagnóstico por Computador , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...